Cos głęboko ukrytego - Sean Carroll(1).rtf

(22901 KB) Pobierz
Co? g??boko ukrytego. ?wiaty kwantowe i emergencja czasoprzestrzeni

                 

 


               

Coś głęboko ukrytego

 

Sean Carroll

 

               

 

              Wszystkim myślicielom na przestrzeni wieków,

 

 

              którzy ze usznych powodów

 

 

              uparcie trwali przy głoszonych ideach

 

 


               

 

              PROLOG

 

              NIE MA SIĘ CZEGO BAĆ

 

              Nawet ludzie z doktoratem z fizyki teoretycznej mogą czuć się nieswojo w obliczu mechaniki kwantowej. Odrobina lęku jednak nie zaszkodzi.

              Może wydawać się to dziwne. Mechanika kwantowa jest najlepszą teorią świata mikroskopowego, jaką udało nam się stworzyć. Opisuje siły natury decydujące o oddziaływaniach atomów i cząstek, formułując niezwykle precyzyjne przewidywania odnośnie do wyników eksperymentów. Niewątpliwie cieszy się opinią dziedziny trudnej, tajemniczej, trochę magicznej. Spośd wszystkich ludzi jednak kto jak nie naukowcy zawodowo zajmujący się fizyką powinni w obliczu takiej teorii czuć się stosunkowo komfortowo? Nieustannie wykonują skomplikowane obliczenia dotyczące zjawisk kwantowych i budują gigantyczne urządzenia mające sł testowaniu przewidywań formułowanych przez tę teorię. Chyba nie sugerujemy, że fizycy przez cały ten czas zmyślali?

              Nie, nie zmyślali, ale też nie byli ze sobą całkowicie szczerzy. Z jednej strony mechanika kwantowa jest sercem i duszą współczesnej fizyki. Astrofizycy, fizycy cząstek, naukowcy zajmujący się atomami i laserami wszyscy przez cały czas wykorzystują mechanikę kwantową i  w tym bardzo dobrzy. Nie jest to tylko kwestia uprawiania ezoterycznych badań. Mechanika kwantowa jest wszechobecna w nowoczesnych rozwiązaniach technologicznych, stanowi bowiem podstawę działania półprzewodników, tranzystorów, układów scalonych i kości pamięci komputerowych. W tym kontekście jest niezbędna, aby zrozumieć najbardziej podstawowe włciwości otaczającego nas świata. Chemia jest dziedziną, która w gruncie rzeczy w całci opiera się na stosowaniu mechaniki kwantowej. Mechanika kwantowa jest nieodzowna, gdy chcemy zrozumieć, skąd się bierze blask Słca i dlaczego stoły są ciałami stałymi.

              Wyobraź sobie, że zamykasz oczy. Robi się ciemno. Możesz sądz, że jest to logiczne, do oczu bowiem nie dociera światło. Nie do końca jest to jednak prawda. Światło z zakresu podczerwieni, o nieco dłszej długości fali od światła widzialnego, nieustannie emitowane jest przez każde rozgrzane ciało, także przez nasz organizm. Jeżeli nasze oczy byłyby wrażliwe na światło w zakresie podczerwieni, tak jak na światło widzialne, to już samo światło emitowane tylko przez nasze własne gałki oczne sprawiałoby, że nawet mimo opuszczonych powiek blask byłby oślepiający. Tak się jednak składa, że pręciki i upki, pełniące funkcję receptorów światła w naszych oczach, są sprytnie wrażliwe na światło widzialne, a nie na podczerwień. Jak to możliwe? Ostatecznej odpowiedzi udziela mechanika kwantowa.

              Mechanika kwantowa to nie magia. Jest to najbardziej pogłębiona, najbardziej wyczerpująca wizja znanej nam rzeczywistości. Zgodnie z obecnym stanem naszej wiedzy nie jest ona przybliżeniem prawdy, ona jest prawdą. Mogłoby się to zmienić w obliczu zaskakujących wyników eksperymentów, lecz na razie nic nie wskazuje, abyśmy mieli natknąć się na takie niespodzianki. Trwający od wczesnych lat XX wieku rozwój mechaniki kwantowej, z którym związane są takie postaci, jak Planck, Einstein, Bohr, Heisenberg, Schrödinger i Dirac, zaowocował ukszttowaniem się do 1927 roku dojrzałego wyobrażenia na temat natury, które bez wątpienia jest jednym z największych intelektualnych osiągnięć w historii ludzkości. Mamy wszelkie podstawy do dumy.

              Z drugiej strony wciąż nam w uszach dzwonią pamiętne słowa Richarda Feynmana: „dzę, że mogę bezpiecznie stwierdzić, iż nikt nie rozumie mechaniki kwantowej”. Wykorzystujemy mechanikę kwantową do projektowania nowych technologii i przewidywania wyników eksperymentów, jednak fizycy szczerze przyznają, że tak naprawdę nie rozumiemy mechaniki kwantowej. Dysponujemy formułą, któ możemy bezpiecznie stosować w pewnych ściśle określonych sytuacjach i dzięki której uzyskujemy niewyobrażalnie precyzyjne przewidywania, triumfalnie potwierdzane przez wyniki eksperymentów. Jeśli jednak zechcesz drąż głębiej i pytać, co rzeczywiście się dzieje, uzyskasz odpowiedź: zwyczajnie nie wiemy. Fizycy przejawiają tendencję do traktowania mechaniki kwantowej jak bezmyślnego aparatu, na którym polegają, gdy przychodzi wykonać określone zadania, a nie jak drogiego sercu przyjaciela, na którym im zależy osobiście.

              Taka postawa ludzi zawodowo związanych z nauką odciska swoje piętno na tym, jak mechanika kwantowa jest objaśniana szerszej publiczności. Naszym podstawowym celem byłoby uzyskanie pełnego obrazu natury, ale nie jesteśmy w stanie tego osiągnąć, ponieważd fizyków brak porozumienia w kwestii, jak zasadniczo brzmi przekaz mechaniki kwantowej. Zamiast szukać platformy porozumienia, popularyzatorskie próby skupiają się na podkreślaniu, jaka to mechanika kwantowa jest tajemnicza, zbijająca z tropu, niemożliwa do zrozumienia. Taki przekaz jest niezgodny z podstawowymi zasadami leżącymi u podstaw nauki, wśd których jest pogląd, iż świat jest w fundamentalny sposób zrozumiały. Kiedy w grę wchodzi rozumienie mechaniki kwantowej, napotykamy coś w rodzaju mentalnej blokady. Do jej przełamania potrzebujemy lekkiej terapii kwantowej.

             

 

              Studentów poznających mechanikę kwantową naucza się wielu regułek. Niektóre z nich wyglądają znajomo: jest to matematyczny opis układów kwantowych i objaśnienie, jak takie układy ewoluują wraz z upływem czasu. Jest jednak jeszcze garść dodatkowych reguł, które nie mają odpowiedników w żadnej innej teorii fizycznej. Te dodatkowe reguły mówią nam, co s dzieje, gdy układ kwantowy jest obserwowany, a zachowanie to jest zupełnie inne, niż gdy ten sam układ nie jest obserwowany. Co, do licha, z tym zrobić?

              Zasadniczo istnieją dwie możliwości. Jedna jest taka, że przekazywana studentom powiastka jest żałnie niekompletna i żeby mechanika kwantowa mogła być zakwalifikowana do grupy poważnych teorii, musimy zrozumieć, czym jest „pomiar” lub „obserwacja” oraz dlaczego nam się zdaje, że tak radykalnie odmieniają one zachowanie układu. Druga możliwość wygląda inaczej. Może mechanika kwantowa odzwierciedla gwałtowne zerwanie z dawnym sposobem myślenia o fizyce, przejście od poglądu, zgodnie z którym świat istnieje obiektywnie i niezależnie od tego, jak go postrzegamy, do punktu widzenia, w którym jakimś sposobem akt obserwacji ma fundamentalne znaczenie dla natury rzeczywistości.

              W każdym z tych dwóch przypadków podręczniki powinny koncentrować się na dogłę...

Zgłoś jeśli naruszono regulamin